PHYSICAL REVIEW E 71, 036219(2005

Determinism test for very short time series
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A test for determinism suitable for time series shorter than 100 points is presented, and applied to numerical
and observed data. The method exploits the lind(@) dependence in the expressid(t) ~dee which
describes the growth of small separations between trajectories in chaotic systems.
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Nonlinear time series analysis is one of the most producsince the two points will generally not be separated along a
tive areas in the study of chaotic systefis3]. When poorly  principal component Now, consider pairs of points with a
applied, however, it can result in the spurious identificationtypical separatiorks, k> 1. These points will be distributed
of chaotic behavior in experimental or observed time seriesalong the attractor with frequencies that roughly follow the
specific cases are discussed4n-6]. Hence, it is advisable to  invariant distribution, and the ensuing distribution of separa-
test series for the two main characteristics of chaos, nonlingon rates will be similar to that of the previous case. Hence,
eanty, and determinism, before engaging in a full analySiSthe expected Separations after timaill be 5t~k§e>\Lt’ lead-
The surrogate data technique has proved to be a good test ffg to the linear relation betweety andd; postulated above.
nonlinearity [7]. Determinism tests have also existed for For random series, we expect no particular correlations
some time[8—11]. . _ _ between points, and a near-zero slope. These expectations

To analyze a time series one requires a number of pointshould especially hold ad, approaches zero. The relation
typically a thousand or more, that increases with the system'getweend, and d; is much easier to see if the latter are
fractal dimenSionég]. Unfortunately, not all observed series averaged over small bins dt), which produces a “skeleton”
are this long. In this paper we propose a method to detect thgf the functional form which is easier to visualitsee below,
presence of determinism which has proved to work well Withespecially Fig. L
series shorter than 100 points. Most of the existing methods |n order to verify these predictions and the usefulness of
use as a criterion for determinism the flow of nearby trajecthe test, we have considered the following time series: peri-
tories in similar direCtionS, and give more reliable results forodic and quasiperiodic sinusoidal SerieS, continuous-time
longer time series. The method we present, instead, relies thaotic series: the Rossler attracf@@]; discrete-time cha-
algebraic calculations of the evolution over time of separagtic series: the Hénon attractpt3]; series resulting from
tions between trajectories. In what follows we describe theyutoregressive(AR) processes[14]; chaotic series with
method, its performance in detecting determinism and disadded noise, and finally series drawn from a uniform, ran-
cerning chaotic, noisy chaotic and random series, and its aRtom distribution. Unless otherwise specified, we have used
plication to observed time series from astrophysics, climatgyn embedding dimension of 2.
and experimental ecology. Out of the above, we have found that our method has the

Our method exploits the expressialit) ~doe™ for the  most difficulties with the first type of series. Average sepa-
evolution in time of the separation in phase space or reconyations fluctuate in periodic and quasiperiodic systems, espe-

structed spacd between states that are initially a distage  cially if the sampling frequency is incommensurate with the
apart in a chaotic system. In contrast, for a random system ® o
)

one expectsl to be independent afy. Thee dependence is 140 - 140
frequently the starting point to estimate Lyapunov exponents. Lo :
For short time series oN points, we can generate all
N(N-1)/2 distancesd, between distinct points. Subse- °©

quently, we evolve all states by 1,.2,time steps, and cal-
culate the distanced,,d,, ... ,d; after j time steps between

all pairs of points. For small enoughwe expect thel; vs d
dependence to be very different for chaotic and random sys
tems. For chaotic series, we expect a linear relation with a
positive slope; the argument is as follows. Suppose we
sample pairs of points with a typical separati@nThe iter- 5
ates after time, &, will separate ae!, where the\, are

local separation rate@ot rigorously Lyapunov exponents,
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* Author to whom correspondence should be addressed. Electronic FIG. 1. d; vs d, for random series(a) scatter plot(b) average;
address: pbinder@hawaii.edu for chaotic(Hénon series:(c) scatter plot(d) average.
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series’s frequencies. Fortunately, these are the easiest to idegrated by integrating 300 time steps of size 0.04 with a
tify through standard linear methods such as Fourier analyfourth-order Runge-Kutta method, after discarding tran-
sis, so we will not be further concerned with them. sients. Parta) shows the data for a time difference between
Figure 1 showsl, vs d, plots for two time series. Two- dy andd; of 16 time steps, comparable to the optimal time
dimensional reconstructions of a series of random numberslelay for attractor reconstructiol5]; part (b) shows the
each uniformly distributed between 0 and 100 are shown asame data for a time difference of 80 time steps, which can
() a scatter plot an¢b) an average over bins of width 2 in also be interpreted as beig in the units of par{(a). There
d,. For chaotic serie@he Hénon map with usual parameters are two main differences from the results shown in Figure 1.
a=1.4,b=0.3), part(c) is a scatter plot and paft) is an  The first is a high degree of internal structure, which persists
average over bins of width 0.004. In the random case, théor times much longer than the optimal reconstruction time.
linear correlatior(r) coefficient of the skeleton data is 0.196, The second is that the slope @f does not seem to increase
with slope of 0.031 and vertical intercept of 47.7. As ex-with time; in fact, it is within 1% of 1.0 for all times checked
pected, the slope is near zero. For the Hénon data (1 to 80 time steps difference betwedpandd,). Both ef-
=0.947, the slope is 1.7 and the intercept is —0.0023, alstects are likely to be a consequence of the continuous-time
consistent with expectations. The results for the Rossler sydormulation of this system and the fact that very close trajec-
tem will be shown below. tories (within 0.1 unity were not found with such a short
Figure 2 shows averages, in bins of width 0.1defd,,  series. We are unable to offer a detailed explanation for our
andds vs dy again for the Hénon map. Two remarks are inresults. Nevertheless, the linear relation between the bin av-
order. First, for fixedd, the separations increase with time eraged values afl; andd, still exists: ther coefficients for
(d3>d,>d;). This also holds for largef in the limit d,  the bin-averaged data are above 0.95.

—0. Second, thel; are seen to saturate for large enoufgh Next we tested the method with noisy, chaotic series. We
as they become comparable to the attractor size and no fustudied Hénon series of different lengtt&0, 100, and 150
ther separation is possible. points, each with added uniform noise of amplitudes of 10,

Figure 3 shows scatter plots df vs d, for the Rossler 20,...,90% of the attractor size. Typical results for 50 points
system, with the usual paramejer5.7. The data were gen- are shown in Fig. 4. While for 10% noise tle vs d, curve

(b) (a) (b)

dq
dy
d

0 1 0 1
do do
FIG. 3. Rossler time seriah vs d, for iteration over(a) 16 and FIG. 4. d; vs dy for 50-point Hénon time series with noise
(b) 80 time steps. amplitude of(a) 10%, (b) 30%.
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FIG. 5. d; vs d, for two autoregressive time series, with) FIG. 6. d; vs dy for (a) pulsating subdwarf an¢b) flour beetle

coefficients comparable to the noise levéd) coefficients much ~ Population time series, as described in the text.

larger than the noise levélalues given in the text
that the data are random. Péj showsd, vs d, for the flour

- . . eetle data. Here=0.42, the slope is 0.67, and the intercept
appears to go through the orgn, for 3.0% noise the Intercepy 55. Since the slope is much greater than zero, we can
IS sllghtly above.O. The amb'gu'tY continues until for 50% or conclude that the data set is deterministic, as was established
more noise the intercept is so high that one has to concludﬁ [17]
that determinism is not present. To summarize the results, for ’
the 50-point series the method detects determinism with up,
to 30% noise; for the longer series, determinism is seen witi&t
up to 50% added noise. As one would expect, having
longer series helps detect determinism masked by higher Ie3
els of noise. |

AR processe$14] are important statistical models that P
contain deterministic and stochastic components. We havg
studied second-order AR processesrTa X1+ aX. o+ v,
wherey, is a Gaussian random variable with mean zero an
standard deviation one. In Fig. 5 we present typical result%
for two cases. In parta) the coefficientsa;,a,)=(1,-0.9

The final example conveys two points. The first is to
cument the method’s performance with a series studied by
her methods: the Southern Oscillation Ind&Ol) series
see[6]). The second is to attempt to provide more rigor in
he application and interpretation of this method, and to ex-
ore the limitations in doing so.

Figure fa shows the now-familiad; vs d, plot for the
Ol series, embedded in three dimensions. The result clearly
oints to absence of determinism, in agreement with what
as reported in Refl6], using other methodf3,9]. How-
ver, the figure presented here was obtain with only 100

ble to th . di th fficient points of the SOI series and relatively little computation
are COTpf(;a_ € tofinhe no_lge, %rl‘ Im mmth N th;]e Icients | time, in contrast with the other two methods, in which well
(a1,a9)=(10,-9 are considerably larger than the noise. N over 1000 points were used.

both cases the slope is close to 0 and the intercept is about 3, |, \vhat we have shown so far. the method relies on the
indicating absence of determinism in AR models. To eXpIa'”partially subjective choices of what a suitably “smatf}

this apparent failure of our method, we note that the neise ¢,.1d be. and how well they, vs d, curve can be described
is part of the dynamics, and hence greatly alters the values cgy a straight line going through the origin. Below, we at-

the x; series, in contrast with the previous case, in Whichtempt to adapt the ideas of surrogate data tegfiido add
noise is added after the dynamics. This explains why OUtigor to our method.

method fails with this apparently simple, linear process. To generate a series with the same invariant distribution

We then analyzed two observed data sets with thig, i \yithout (deterministia temporal correlations, we just

method. The first series is the light curve for KPD 1930664 tg shuffle the data points. We have done this, and show
+2752, a pulsating subdwarf B stéfig. 9 in [16], lower  yhe  vs d, results in partb) of Fig. 7. If the series were
curve. Short-period variations have been filtered out, and a

four-frequency ellipsoidal modulation has been subtracted, o (@) W0 (®)
which leaves a series of 100 residuals, which are presumabl'
random. We studied the latter with the method described

above.
The second is a series of 41 tripletmrvae, pupae,
adultg, collected every two weeks, of the population of the © <

Tribolium flour beetle[17]. The series is replicate 13 in p. R
218, with mortality and cannibalism coefficiertjs,, c,,) ad- R IR LI C
justed so that the system is chaotic. In addition to “demo-

graphic” fluctuations, the measurements in the series ar¢ o 0

non-negative integers, which coarsens phase space. 0 % 8 0 4 8
The results for these data sets are shown in Fig. 6.(Bart

showsd,; vs dy for the subdwarf data. Here=-0.46, the FIG. 7. d; vs dy for Southern Oscillation Index serigd00

slope is -2.6<10°% and the vertical intercept is 0.27. pointy, embedded in three dimensiors) original series, andb)
Clearly, the skeleton d, is nearly flat, and we can conclude reconstruction of shuffled series.
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deterministic, one would expect this curve to show far moregancesd, between points, and for small enoud§) looks at
random characteristics than the original one; however, if thehe evolution of these distances in time. If the separations
series is nondeterministic, as is the case here, the resuligter| time stepsl; are independent af, the series is likely
should not change very much. Indeed, both parts of the figto be random; if there is a lineak vs d, relation with near-

ure show a clear nonzero intercept and very shallow slope. IBero intercept and a significant slope, the series is likely to be
principle, one can compare a given mefistope, intercept  deterministic. The method appears to be robust even if the
with that of an ensemble of shuffled time series. One careries has considerable amounts of noise. We have applied
then attach statistical significance to the metric of the origithe method to three observed series: it seems to discriminate
nal series by calculating how close it is, in standard deVia‘convincineg between random and chaotic behavior. While
tions, to the mean of t_hg shuffled _samples: ifitis atypiqal_ ofwe have attempted to find a way for the method to yield
a random replicate, it is more likely to be deterministic. giagistically significant results, a certain degree of subjectiv-

However, since the choice of tidy cutoff is still arbitrary,  jiy i its application ultimately precludes such a develop-
we recommend at best generating one surrogate data seriggent.

as we did in this example.

To conclude, we have developed a method to discern ran- This work was supported by the Research Corporation.
dom and chaotic behavior in short time series, with evenNe thank A. Steindamm, R. Figueroa-Centeno, and H. Read
fewer than 100 points. The method generate€OéN?) dis-  for assistance with data processing.
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