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A test for determinism suitable for time series shorter than 100 points is presented, and applied to numerical
and observed data. The method exploits the lineardsd0d dependence in the expressiondstd,d0e

lt which
describes the growth of small separations between trajectories in chaotic systems.

DOI: 10.1103/PhysRevE.71.036219 PACS numberssd: 05.45.Pq

Nonlinear time series analysis is one of the most produc-
tive areas in the study of chaotic systemsf1–3g. When poorly
applied, however, it can result in the spurious identification
of chaotic behavior in experimental or observed time series;
specific cases are discussed inf4–6g. Hence, it is advisable to
test series for the two main characteristics of chaos, nonlin-
earity, and determinism, before engaging in a full analysis.
The surrogate data technique has proved to be a good test for
nonlinearity f7g. Determinism tests have also existed for
some timef8–11g.

To analyze a time series one requires a number of points,
typically a thousand or more, that increases with the system’s
fractal dimensionsf3g. Unfortunately, not all observed series
are this long. In this paper we propose a method to detect the
presence of determinism which has proved to work well with
series shorter than 100 points. Most of the existing methods
use as a criterion for determinism the flow of nearby trajec-
tories in similar directions, and give more reliable results for
longer time series. The method we present, instead, relies on
algebraic calculations of the evolution over time of separa-
tions between trajectories. In what follows we describe the
method, its performance in detecting determinism and dis-
cerning chaotic, noisy chaotic and random series, and its ap-
plication to observed time series from astrophysics, climate
and experimental ecology.

Our method exploits the expressiondstd,d0e
lt for the

evolution in time of the separation in phase space or recon-
structed spaced between states that are initially a distanced0
apart in a chaotic system. In contrast, for a random system
one expectsd to be independent ofd0. Theelt dependence is
frequently the starting point to estimate Lyapunov exponents.

For short time series ofN points, we can generate all
NsN−1d /2 distancesd0 between distinct points. Subse-
quently, we evolve all states by 1, 2,… time steps, and cal-
culate the distancesd1,d2, . . . ,dj after j time steps between
all pairs of points. For small enoughj , we expect thedj vs d0
dependence to be very different for chaotic and random sys-
tems. For chaotic series, we expect a linear relation with a
positive slope; the argument is as follows. Suppose we
sample pairs of points with a typical separationd. The iter-
ates after timet, dt, will separate asdelLt, where thelL are
local separation ratessnot rigorously Lyapunov exponents,

since the two points will generally not be separated along a
principal componentd. Now, consider pairs of points with a
typical separationkd, k.1. These points will be distributed
along the attractor with frequencies that roughly follow the
invariant distribution, and the ensuing distribution of separa-
tion rates will be similar to that of the previous case. Hence,
the expected separations after timet will be dt,kdelLt, lead-
ing to the linear relation betweend0 anddj postulated above.

For random series, we expect no particular correlations
between points, and a near-zero slope. These expectations
should especially hold asd0 approaches zero. The relation
betweend0 and dj is much easier to see if the latter are
averaged over small bins ofd0, which produces a “skeleton”
of the functional form which is easier to visualizessee below,
especially Fig. 1d.

In order to verify these predictions and the usefulness of
the test, we have considered the following time series: peri-
odic and quasiperiodic sinusoidal series, continuous-time
chaotic series: the Rössler attractorf12g; discrete-time cha-
otic series: the Hénon attractorf13g; series resulting from
autoregressivesARd processesf14g; chaotic series with
added noise, and finally series drawn from a uniform, ran-
dom distribution. Unless otherwise specified, we have used
an embedding dimension of 2.

Out of the above, we have found that our method has the
most difficulties with the first type of series. Average sepa-
rations fluctuate in periodic and quasiperiodic systems, espe-
cially if the sampling frequency is incommensurate with the
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FIG. 1. d1 vs d0 for random series:sad scatter plot,sbd average;
for chaoticsHénond series:scd scatter plot,sdd average.
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series’s frequencies. Fortunately, these are the easiest to iden-
tify through standard linear methods such as Fourier analy-
sis, so we will not be further concerned with them.

Figure 1 showsd1 vs d0 plots for two time series. Two-
dimensional reconstructions of a series of random numbers,
each uniformly distributed between 0 and 100 are shown as
sad a scatter plot andsbd an average over bins of width 2 in
d0. For chaotic seriessthe Hénon map with usual parameters
a=1.4, b=0.3d, part scd is a scatter plot and partsdd is an
average over bins of width 0.004. In the random case, the
linear correlationsrd coefficient of the skeleton data is 0.196,
with slope of 0.031 and vertical intercept of 47.7. As ex-
pected, the slope is near zero. For the Hénon datar =
=0.947, the slope is 1.7 and the intercept is −0.0023, also
consistent with expectations. The results for the Rössler sys-
tem will be shown below.

Figure 2 shows averages, in bins of width 0.1, ofd1, d2,
andd3 vs d0 again for the Hénon map. Two remarks are in
order. First, for fixedd0 the separations increase with time
sd3.d2.d1d. This also holds for largerj in the limit d0

→0. Second, thedj are seen to saturate for large enoughd0,
as they become comparable to the attractor size and no fur-
ther separation is possible.

Figure 3 shows scatter plots ofd1 vs d0 for the Rössler
system, with the usual parameterm=5.7. The data were gen-

erated by integrating 300 time steps of size 0.04 with a
fourth-order Runge-Kutta method, after discarding tran-
sients. Partsad shows the data for a time difference between
d0 and d1 of 16 time steps, comparable to the optimal time
delay for attractor reconstructionf15g; part sbd shows the
same data for a time difference of 80 time steps, which can
also be interpreted as beingd5 in the units of partsad. There
are two main differences from the results shown in Figure 1.
The first is a high degree of internal structure, which persists
for times much longer than the optimal reconstruction time.
The second is that the slope ofd1 does not seem to increase
with time; in fact, it is within 1% of 1.0 for all times checked
s1 to 80 time steps difference betweend0 andd1d. Both ef-
fects are likely to be a consequence of the continuous-time
formulation of this system and the fact that very close trajec-
tories swithin 0.1 unitsd were not found with such a short
series. We are unable to offer a detailed explanation for our
results. Nevertheless, the linear relation between the bin av-
eraged values ofd1 andd0 still exists: ther coefficients for
the bin-averaged data are above 0.95.

Next we tested the method with noisy, chaotic series. We
studied Hénon series of different lengthss50, 100, and 150
pointsd, each with added uniform noise of amplitudes of 10,
20,…,90% of the attractor size. Typical results for 50 points
are shown in Fig. 4. While for 10% noise thed1 vs d0 curve

FIG. 4. d1 vs d0 for 50-point Hénon time series with noise
amplitude ofsad 10%, sbd 30%.

FIG. 2. d1 scrossesd, d2 sfull circlesd, andd3

sopen squaresd vs d0 for the Hénon map time
series.

FIG. 3. Rössler time seriesd1 vs d0 for iteration oversad 16 and
sbd 80 time steps.
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appears to go through the origin, for 30% noise the intercept
is slightly above 0. The ambiguity continues until for 50% or
more noise the intercept is so high that one has to conclude
that determinism is not present. To summarize the results, for
the 50-point series the method detects determinism with up
to 30% noise; for the longer series, determinism is seen with
up to 50% added noise. As one would expect, having a
longer series helps detect determinism masked by higher lev-
els of noise.

AR processesf14g are important statistical models that
contain deterministic and stochastic components. We have
studied second-order AR processes,xt=a1xt−1+a2xt−2+nt,
wherent is a Gaussian random variable with mean zero and
standard deviation one. In Fig. 5 we present typical results
for two cases. In partsad the coefficientssa1,a2d=s1,−0.5d
are comparable to the noise, and in partsbd the coefficients
sa1,a2d=s10,−9d are considerably larger than the noise. In
both cases the slope is close to 0 and the intercept is about 3,
indicating absence of determinism in AR models. To explain
this apparent failure of our method, we note that the noisen
is part of the dynamics, and hence greatly alters the values of
the xt series, in contrast with the previous case, in which
noise is added after the dynamics. This explains why our
method fails with this apparently simple, linear process.

We then analyzed two observed data sets with this
method. The first series is the light curve for KPD 1930
+2752, a pulsating subdwarf B starsFig. 9 in f16g, lower
curved. Short-period variations have been filtered out, and a
four-frequency ellipsoidal modulation has been subtracted,
which leaves a series of 100 residuals, which are presumably
random. We studied the latter with the method described
above.

The second is a series of 41 tripletsslarvae, pupae,
adultsd, collected every two weeks, of the population of the
Tribolium flour beetlef17g. The series is replicate 13 in p.
218, with mortality and cannibalism coefficientssma,cpad ad-
justed so that the system is chaotic. In addition to “demo-
graphic” fluctuations, the measurements in the series are
non-negative integers, which coarsens phase space.

The results for these data sets are shown in Fig. 6. Partsad
showsd1 vs d0 for the subdwarf data. Herer =−0.46, the
slope is −2.6310−4, and the vertical intercept is 0.27.
Clearly, the skeleton ofd1 is nearly flat, and we can conclude

that the data are random. Partsbd showsd1 vs d0 for the flour
beetle data. Herer =0.42, the slope is 0.67, and the intercept
is 55. Since the slope is much greater than zero, we can
conclude that the data set is deterministic, as was established
in f17g.

The final example conveys two points. The first is to
document the method’s performance with a series studied by
other methods: the Southern Oscillation IndexsSOId series
sseef6gd. The second is to attempt to provide more rigor in
the application and interpretation of this method, and to ex-
plore the limitations in doing so.

Figure 7sad shows the now-familiard1 vs d0 plot for the
SOI series, embedded in three dimensions. The result clearly
points to absence of determinism, in agreement with what
was reported in Ref.f6g, using other methodsf8,9g. How-
ever, the figure presented here was obtain with only 100
points of the SOI series and relatively little computation
time, in contrast with the other two methods, in which well
over 1000 points were used.

In what we have shown so far, the method relies on the
partially subjective choices of what a suitably “small”d0
should be, and how well thed1 vs d0 curve can be described
by a straight line going through the origin. Below, we at-
tempt to adapt the ideas of surrogate data testingf7g to add
rigor to our method.

To generate a series with the same invariant distribution
but without sdeterministicd temporal correlations, we just
need to shuffle the data points. We have done this, and show
the d1 vs d0 results in partsbd of Fig. 7. If the series were

FIG. 5. d1 vs d0 for two autoregressive time series, withsad
coefficients comparable to the noise level,sbd coefficients much
larger than the noise levelsvalues given in the textd.

FIG. 6. d1 vs d0 for sad pulsating subdwarf andsbd flour beetle
population time series, as described in the text.

FIG. 7. d1 vs d0 for Southern Oscillation Index seriess100
pointsd, embedded in three dimensions:sad original series, andsbd
reconstruction of shuffled series.
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deterministic, one would expect this curve to show far more
random characteristics than the original one; however, if the
series is nondeterministic, as is the case here, the results
should not change very much. Indeed, both parts of the fig-
ure show a clear nonzero intercept and very shallow slope. In
principle, one can compare a given metricsslope, interceptd
with that of an ensemble of shuffled time series. One can
then attach statistical significance to the metric of the origi-
nal series by calculating how close it is, in standard devia-
tions, to the mean of the shuffled samples: if it is atypical of
a random replicate, it is more likely to be deterministic.
However, since the choice of thed0 cutoff is still arbitrary,
we recommend at best generating one surrogate data series,
as we did in this example.

To conclude, we have developed a method to discern ran-
dom and chaotic behavior in short time series, with even
fewer than 100 points. The method generates allOsN2d dis-

tancesd0 between points, and for small enoughd0, looks at
the evolution of these distances in time. If the separations
after j time stepsdj are independent ofd0, the series is likely
to be random; if there is a lineardj vs d0 relation with near-
zero intercept and a significant slope, the series is likely to be
deterministic. The method appears to be robust even if the
series has considerable amounts of noise. We have applied
the method to three observed series; it seems to discriminate
convincingly between random and chaotic behavior. While
we have attempted to find a way for the method to yield
statistically significant results, a certain degree of subjectiv-
ity in its application ultimately precludes such a develop-
ment.
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